A Nonregular Analogue of Conference Graphs

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extreme eigenvalues of nonregular graphs

Let λ1 be the greatest eigenvalue and λn the least eigenvalue of the adjacency matrix of a connected graph G with n vertices, m edges and diameter D. We prove that if G is nonregular, then Δ− λ1 > nΔ− 2m n(D(nΔ− 2m)+ 1) 1 n(D + 1) , where Δ is the maximum degree of G. The inequality improves previous bounds of Stevanović and of Zhang. It also implies that a lower bound on λn obtained by Alon an...

متن کامل

A spectral excess theorem for nonregular graphs

Let G = (V G,EG) be a connected graph on n vertices, with diameter D, adjacency matrix A, and distance function ∂. Assume that A has d + 1 distinct eigenvalues λ0 > λ1 > · · · > λd with corresponding multiplicities m0 = 1, m1, . . ., md. From the spectrum of G we then define an inner product 〈·, ·〉4 on the vector space Rd[x] of real polynomials of degree at most d. It is well-known that Rd[x] h...

متن کامل

The largest eigenvalue of nonregular graphs

We give an upper bound for the largest eigenvalue of a nonregular graph with n vertices and the largest vertex degree ∆.

متن کامل

Nonregular Triangulations, View Graphs of Triangulations, and Linear Programming Duality

For a triangulation and a point, we de ne a directed graph representing the order of the maximal dimensional simplices in the triangulation viewed from the point. We prove that triangulations having a cycle the reverse of which is not a cycle in this graph viewed from some point are forming a (proper) subclass of nonregular triangulations. We use linear programming duality to investigate furthe...

متن کامل

Constructing Fifteen Infinite Classes of Nonregular Bipartite Integral Graphs

A graph is called integral if all its eigenvalues (of the adjacency matrix) are integers. In this paper, the graphs S1(t) = K1,t, S2(n, t), S3(m,n, t), S4(m,n, p, q), S5(m,n), S6(m,n, t), S8(m,n), S9(m,n, p, q), S10(n), S13(m,n), S17(m,n, p, q), S18(n, p, q, t), S19(m,n, p, t), S20(n, p, q) and S21(m, t) are defined. We construct the fifteen classes of larger graphs from the known 15 smaller in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Combinatorial Theory, Series A

سال: 1999

ISSN: 0097-3165

DOI: 10.1006/jcta.1999.2983